

SRI VANI DEGREE &PG COLLEGE

Affiliated to SK University

Kakkalapalli Cross, Near Sakshi Office, Ananthapuramu

Andhen Dradaah India E1E009

Department profile of biotechnology & microbiology: The department of biotechnology & microbiology are established in 2019 with an UG course Bt. m. c(biotechnology, microbiology, chemistry). The department has equipped with latest laboratory which enables students to have the best practical knowledge to complete with industrial needs. The department consistently encourages the students to participate in sports, NSS & other extra curricular activities.

VISION :"Attaining new heights in biotechnology research, shaping biotechnology into a premier precision tool of the future ".

MISSION Enhance efficiency and productivity and cost effective ness of Agriculture, nutritional security, molecular medicine, environmentally sustainable technologies and empowerment of human resources.

Courses / Programs offered:

Level	Course
Under Graduate	BtMC – Biotechnology, Microbiology, Chemistry.

Course Structure under CBCS:

Year Semester Course Title of the Course	Internal	Externa	Total
--	----------	---------	-------

				Marks	l Marks	Marks
	Ι	Ι	Micro Biology And Cell Biology	25	75	100
			Practical Course – I	-	50	50
I	II	II	Macromolecules, Enzymology And Bioenergetics	25	75	100
			Practical Course – II	-	50	50
	III	III	Bio-Physical Techniques	25	75	100
			Practical Course – III	-	50	50
II	IV	IV	Immunology	25	75	100
			Practical Course – IV	-	50	50
		V	Molecular Biology	25	75	100
			Practical BTP – 502	-	50	50
	V	VI	Recombinant DNA Technology	25	75	100
			Practical BTP – 504	-	50	50
-			Animal And Plant Biotechnology	25	75	100
			Practical BTP – 602	-	50	50
III			Industrial Biotechnology	25	75	100
	VI		Practical BTP – 608	-	50	50
			Metabolism And Genetics	25	75	100
			Practical BTP-606	-	50	50

Course Structure under CBCS:

Year	Semester	Course	Title of the Course	Internal Marks	Externa l Marks	Total Marks
	Ι	Ι	Introduction to Microbiology And Microbial Diversity	25	75	100
Ι			Practical Course – I	-	50	50
	II	II	Microbial Biochemistry And Metabolism	25	75	100

			Practical Course – II	-	50	50
	III	III	Microbial Genetics and Molecular Biology	25	75	100
II			Practical Course – III	-	50	50
	IV	IV	Immunology And Medical Microbiology	25	75	100
			Practical Course – IV	-	50	50
		V	Environmental And Agricultural Microbiology	25	75	100
	V		Practical MBP – 501	-	50	50
III		VI	Food And Industrial Microbiology	25	75	100
			Practical MBP – 502	-	50	50
			Microbial Biotechnology	25	75	100
			Practical MBP – 601	-	50	50
			Microbial Diagnosis in Health Clinics	25	75	100
	VI		Practical MBP – 701	-	50	50
			Management of Human Microbial Diseases	25	75	100
			Project work	-	50	50

Number of teaching posts:

Post	Sanctioned	Filled
Teaching	01	01

Program outcomes, Program specific outcomes, Course outcomes:

Program outcomes	
PO1	Critical Thinking:
	The curriculum made for the betterment of the students; enhance the ability and
	thinking power of the students
PO2	Effective Communication:
	Acquire and apply better communication and know ledge of sciences and engineering
	fundamentals.

PO3	Social Interaction:
	Due to continuous interaction with students in terms of various program run by
	department i.e. Curiosity Thirsty For Knowledge program, Celebration of 'Birth Day'
	of Teaching Staff and Students, Extension activity. Helps to increase Social
	Interaction.
PO4	Effective Citizenship:
	Being the students of Bio Technology they have to communicate with people, They have
	developed
	skills in Interactions among themselves and participating in blood grouping test.
PO5	Ethics:
	The subject teaches students about the ethics and provide expert advice to society in
	science, technology and engineering.
PO6	Environment and Sustainability:
	Integrate information for life long learning.

	Program Specific outcomes
PSO1	Acquire knowledge on the fundamentals of biotechnology and sound and solid base which enables them to understand the emerging and advanced engineering.
PSO2	Students can know the basic terminology of molecular biology and genetics. Study bioreactors for environmental applications.
PSO3	Students should learn how to design a drug and different types of vaccines given to prever from bacterial and viral diseases like tuberculosis, pertusis, tetanus, polio, influenza etc.,
PSO4	Students will develop the proficiency by doing different types of diagnosing tests using a variety of laboratory instruments and in the analysis and interpretation of such serological tests.
PSO5	Stlearn discover of microbial concepts in other discipline and study bioreactors for environmental applications.
PSO6	Students will learn tools and techniques in the field of environmental biotechnology.
PSO7	To know the role of microorganisms as biotechnological agents
PSO8	Learn to minimize contributing variables and recognize the limitations of Equipment. Discover of biotechnical concepts in other disciplines such as microbiology, biochemistry and chemistry.
PSO9	Discover of biotechnical concepts in other disciplines such as microbiology, biochemistry , and chemistry.
PSO10	Learn master the basic terminology of molecular biology and genetics and about different types of vaccines given for different types of diseases.
PSO11	Develop the following experimental instruments like Autoclave, incubator, laminar air flow, helpful for preparation of culture media and isolation of microorganisms.

COURSE OUTCOMES

SEMISTER –I

TITLE OF THE COURSE-MICROBIOLOGY AND CELL BIOLOGY

On successful completion of this course student will

1.Understanding of development of microbiology

2. Evaluate and instrumentation of compound microscope

3.understand dark field microscope

4.understand transmission electron microscope

5.understand scanning electron microscope

6.understand about gram staining technique

7. About Acid fast staining

SEMISTER -- II

TITLE OF THE COURSE-MACROMOLECULES, ENZYMOLOGY AND BIOENERGETICS

On succesfull completion of this course students will

1.Understand chemical structure of nucleic acids

2.Understand about watsons crick model

3.classification of carbohydrates

4.Explanation about lock and key model of enzymes

5.Brief account on LIPIDS classification

6.understand concept of free energy

7. About glycolysis pathway

SEMESTER-III

TITLE OF THE COURSE-BIOPHYSICAL TECHINIQUES

On successful completion of this course students will

1.understand spectrum of light

2. Understad beers lamberts law

3. Account on paper chromatography

4.understand electrophoresis

5.understand gel electrophoresis

6.SDS PAGE electrophoresis

7.types of centrifugation

SEMESTER-IV

TITLE OF THE COURSE-IMMUNOLOGY

On successful completion of this course students will

1.Understand organs and cells of immune system

2.understand acquired immune system

3.understand antigen and antibody mechanism

4. Brief account on cell mediated immunity

5.understand hypersensitivity

6.Idea about ELISAtest

7.understand HYBRIDOMA TECHNOLOGY

SEMESTER- V

TITLE OF THE COURSE -MOLECULAR BIOLOGY

On successful completion of this course students will

1.undrstand how to prove DNA as genetic material

2. Explanation on DNA replication

3.understand prokaryotic replication

4. About transcription of RNA

5. Account on REGULATION OF GENE EXPRESSION

6.Understand about lacoperon

7. About genetic code of protein synthesis

SEMISTER -- V

TITLE OF THE COURSE – RECOMBINENT DNA TECHNOLOGY

ON SUCCESFUL COMPLITION OF COURSE STUDENTS WILL

1.Understand cutting and joining of dna

2.Brief Account on bacteriophages

3.methods of gene sequencing

4.methods of genetransfer

5.understand recombinant DNAtechnology in agriculture

6.understandPcR

SEMISTER-VI

TITLE OF THE COURSE - Animal and plant biotechnology

On successful completion of course students will

1.understand animal cell and tissue culture

2.Account on various techniques of plant and animal tissue culture

3.understand plant tissue

4.Idea about r.DNA PRODUCTS IN MEDICINE

5.UNDERSTAND IPR TECHNOLOGY

SEMISTER VI

TITLE OF THE COURSE –METABOLISM AND GENETICS

On successful completion of course students will

1.Understand carbohydrate metabolism

2.understand amino acid and lipid metabolism 3.understand mendels experiments

4.Account on gene mutation

5.Idea about giant chromosome

SEMISTER-VI

TITLE OF THE COURSE-INDUSTRIAL BIOTECHNOLOGY

On successful completion of course students will

1.UNDERSTAND isolation of indrustial microorganisms

2.Brief account on bioreactors

3.Account on fermentation technology

4.idea about sourse of industrial enzyme

5. Account on biotechnology products

Program outcomes, Program specific outcomes, Course outcomes:

	Program outcomes
PO1	Critical Thinking:
	The curriculum made for the betterment of the students; enhance the ability and
	thinking power of the students
PO2	Effective Communication:

	Studens can develop communisation by participating in social works and comprehensive technical expertise.
PO3	Social Interaction:
	Due to continuous interaction with students in terms of various program run by
	department i.e. Curiosity Thirsty For Knowledge program, Celebration of 'Birth Day'
	of Teaching Staff and Students, Extension activity. Helps to increase Social Interaction.
PO4	Effective Citizenship:
	Being the students of microbiology they have to communicate with people, They have
	developed skills in Interactions among themselves and participating in blood grouping test.
PO5	Ethics:
	The subject teaches students about the ethics and awareness about microbial diseases and loss of patent.
PO6	Environment and Sustainability:
	Integrate information for life long learning.

	Program Specific outcomes
PSO1	acquire knowledge on the fundamentals of biotechnology and sound and solid base which enables them to understand the emerging and advanced engineering.
PSO2	Students are also expected to develop and provide expert advice to society in science, technology and engineering.
PSO3	Students should learn how to conduct an experiment (or series of experiments) demonstrating their understanding of the scientific methods and comprehensive technica expertise.
PSO4	Students will develop the proficiency by doing different types of diagnosing tests using a variety of laboratory instruments and in the analysis and interpretation of such serological tests.
PSO5	Students will learn the applications of techniques for modeling microbiology for which analytical methods are inappropriate or of limited utility.
PSO6	Studens can learn role of microorganisms as biotechnological agents.
PSO7	Describe the methodology of science and the relationship between observation and theory.
PSO8	Learn master the basis terminology of molecular biology and genetics and about different types of vaccines given for different types of diseases.
PSO9	Discover of microbial concepts in other disciplines and study bioreactors for environment applications. y
PSO10	Develop the following experimental instruments : autoclave, incubator, laminar air flow helpful for preparation of culture media and isolation of microorganisms.
PSO11	Provide expert advice to society in science, technology and engineering.

COURSE OUTCOMES

SEMISTER –I

TITLE OF THE COURSE-INTRODUCTION TO MICROBIOLOGY, MICROBIAL DIVERSITY

On successful completion of this course student will
1.Understanding of development of microbiology
2explanation about.Contributions of scientists
3.understandcharecters of bacteria
4.understandmycoplasmcharecteristics
5.understand gram staining
6.About HIV AND TMV
7. Isolation of microorganismby using various types of methods
SEMISTER –II
TITLE OF THE COURSE-MICRBIAL BIOCHEMISTRY AND METABOLISM
On succesfull completion of this course students will
1.UnderstandCARBOHYDRATES classification
2.explanation about calorimetry
3.understand chromatography techniques
4. About centifugation and elactrophoresis
5.understand classification of enzymes
6.Account on microbial nutrition
7. Explanation of HMP, GLYCOLYSIS pathways
SEMESTER-III
TITLE OF THE COURSE-MICROBIAL GENETICS AND MOLECULAR BIOLOGY
On successful completion of this course students will
1.understandDNA and RNA as genrtic material

- 2. structure and organisation of prokaryotic DNA
- 3. Understand about MUTATIONS
- 4.understandconcept of gene mutation
- 5.understandtypes of genes
- 6.About basic principles of genetic engineering
- 7.understand aboutgene cloning methods

SEMESTER-IV

TITLE OF THE COURSE-IMMUNOLOGY AND MEDICAL MICROBIOLOGY

On successful completion of this course students will

1. Understand TYPES OF IMMUNITY

2.understand ANTIGEN TYPES

3.understand normal floura of hum, an body

4. About antibacterial agents

5.understand anti fungal agents

6.brief account on microbial diseases

7.understand on viral diseases

SEMESTER- V

TITLE OF THE COURSE -ENVIRONMENTAL AND AGRICULTURE MICROBIOLOGY

On successful completion of this course students will

1.undrstandacquatic environment

2role of microbes in nutrient cycling

3.understandmembrane filter techniques

4. Account on solid waste managment

5. Account on liquid waste management

6.plant growth promoting micro organisms

7.Understand concept of diseses in plants

SEMISTER-V

TITLE OF THE COURSE –FOOD AND INDUSTRIAL MICROBIOLOGY

ON SUCCESFUL COMPLITION OF COURSE STUDENTS WILL

- 1. Understand INTRINSIC microbial growth
- 2.understand food born diseases
- 3.food preservations
- 4.fermentaed dairy foods
- 5.understand types of fermentation processes

6.understandcitic acid production

SEMISTER -VI

TITLE OF THE COURSE –MICROBIAL BIOTECHNOLOGY

On successful completion of course students will

1.understand MICROBIAL BIOTECHNOLOGY

2. Account on Pharmaceutical industries

3.understand steroids and sterols

4.understand immobilization methods

5.UNDERSTAND bio ethanol products

SEMISTER VI

TITLE OF THE COURSE –MICROBIAL DIAGNOSIS IN HEALTH CLINICS

On successful completion of course students will

1.Understand MICROBIAL diseases

2.collection of clinical samples

- 3.examination of sample by staining
- 4. Account on serological methods

5. About MIC of an antibiotic

SEMISTER-VI

TITLE OF THE COURSE-MICROBIAL QUALITY CONTROL IN FOOD AND PHARMACEUTICAL INDUSTRIES

On successful completion of course students will

1.UNDERSTANDGOOD LABORATORY PRACTICESS

2.Culture and microscopic methods

- 3.understand about molecular methods
- 4. Understand on enrichment techniques

5.explanation about hazard analysis

Lecturer Profile:

Name

: Ms. Syed Rehana Sultana

Qualification	: MSc Biochemistry
Experience	: 02
Other Position	: Swachhtta Action Plan Member

Faculty Profile:

N	ame	Qualification	Designation	Specialization	Teaching Experience
5	ed Rehana ltana	MSc	Lecturer in Biotechnology and Microbiology	Biochemistry	02

Student-Teacher Ratio:

Class	Number of Teachers	Student Teacher Ratio
I BtMC		20:1
II BtMC	01	20:1
III BtMC		-
	I BtMC II BtMC	I BtMC 01

Number of Academic Staff (technical) and Administrative Staff:

	Sanctioned	Filled
Lab Assistants	01	01
Lab Attendants	01	-

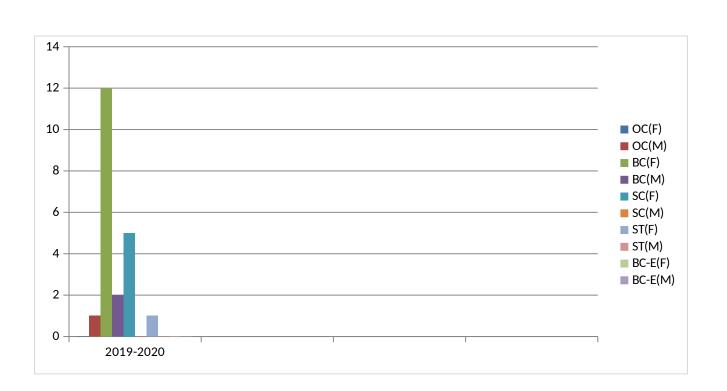
Qualification of Teaching Faculty:

PDF	PhD	M.Phil	PG with NET/SLET	PG	
-	-	-	-	01	

Student Profile program wise:

Name of the	Year	Total Seats	En	olled	Total
Course			Male	Female	-
	2019-2020	50	04	16	20
BtMC	2020-2021	50	04	16	20

Pass Percentage:


Year	Month	Semester	Enrolled		Арр	eared	Pass Percentage
			Male	Female	Male	Female	1 er centage
	Nov/Dec	Ι	04	16	04	15	78.67
2019-2020	Mar/Apr	II	-	-	-	-	-
		Ι	-	-	-	-	-
	Nov/Dec	III	-	-	-	-	-
2020-2021		II	-	-	-	-	-
	Mar/Apr	IV	-	-	-	-	-

Pass Percentage:

Year	Month	Semester	Enrolled		Арр	eared	Pass Percentage		
			Male	Female	Male	Female	I ci centage		
	Nov/Dec	Ι	04	16	04	15	89.47		
2019-2020	Mar/Apr	II		-	-	-	-		
		Ι	-	-	-	-	-		
	Nov/Dec	III	-	-	-	-	-		
2020-2021		II	-	-	-	-	-		
	Mar/Apr	IV	-	-	-	-	-		

Student Strength:

Year	Total Seats	Enro	olled	Category									
	Stats	М	F	OC (F)	OC (M)	BC (F)	BC (M)	SC (F)	SC (M)	ST (F)	ST (M)	BC -E (F)	BC -E (M)
2019-2020	50	04	16	-	1	12	1	5	-	-	-	-	01
2020-2021	50												

Diversity of Students:

Name of Course	% of students from the same state	% of students from other state	% of students from abroad
UG	100	-	-

Details of Infrastructure facilities:

Library:

Internet facility for Staff and students:

Classroom with ICT facility:

Laboratories:

Teaching methods adopted to improve student learning:

Facilities:

➤ Laboratories with equipments and full fledge space

Equipment:

- UV Spectrophotometer
- Hot air oven
- Autoclave
- Colorimeter

- Centrifuge
- Water bath
- Laminar air flow
- Incubator
- Rotatory shaker
- Fluorometer
- Mini Spectrometer
- Binocular microscope
- Compound Microscopes
- Physical Balance
- Weighing Machine
- TLC
- Blood group Antisera
- Widal kit
- VDRL kit
- Hb meter
- Sphygmomanometer
- Weight machine
- Stethoscope
- Syringe

Glassware:

- Petri dishes
- Glass chambers
- Conical flask
- Beakers
- Volumetric flask
- Vials
- Centrifuge tubes
- Standard flask
- Burettes
- Pipettes
- Pipettes stands
- Test tubes
- Holders
- Spatula
- Test tube stands
- Watch glass
- Thermometer
- Motor & pestle
- Burettes stands
- Whatman no.1 filter paper
- Funnels
- Glass slides
- Histological slides

- Reagent Bottles
- Measuring jar
- Cover slips
- Neubar's chamber
- Lancet
- Inoculating Loop
- Needles

Chemicals:

- Acetone
- Acetic acid
- n-Amyl alcohol
- Ammonium oxalate
- Ammonium peroxide
- Ammonium persulphate
- Ammonium ferrous sulphate
- Ammonium molybdate
- Ammonium dihydroxy orthophosphate
- Ammonium acetate
- Ammonium nitrate
- Ammonium chloride
- Ammonium thiocyanate
- Ammonium sulphate
- di Ammonium oxalate
- Aluminium sulphate
- Aluminium oxide
- Anthrone
- Alanine
- Agar agar
- Acetaldehyde
- Acrylamide
- 4-amino 3-hydroxy naphthalene sulphanic acid
- Ascorbic acid
- Amyl alcohol
- Acetyl acetone(2,4 pentanedone)
- Acetophenone
- Acetonitrile
- Ammonia solution
- Aminophenol
- Acetamide
- Ammonium sulphide
- Ammonium carbonate
- Ammonium dihydrogen
- Ammonium cerium
- Ammonium ceric sulphate

- Ammonium metavanadate
- Ammonium fluoride
- Ammonium bromide
- Ammonium nickel sulphate
- Ammonium nitrite
- Ammonium nitrate
- ANSA reagent
- Acetocaramine solution
- Butanol
- Bromine water
- Benedicts reagent
- Benzene
- Benzoic acid
- Beef extract
- Barium acetate
- Barium chloride
- Barium hydroxide
- Barbuturic acid
- Bipyridyle
- Bromophenol blue
- Bromothymol blue
- Bromocresol green
- Bromocresol purple
- Boric acid
- Bovine serum albumin
- Benzoin for synthesis
- Benzal thuronium chloride
- Bismuth nitrate
- Buffer tablets
- Benzophenone
- Barium nitrate
- Barfoed's reagent
- Benzyl benzoate
- Benzaldehyde
- Benzyl chloride
- Biuret reagent
- Casein
- Calcium chloride
- Carbonate
- Calcium fluoride
- Calcium hydroxide
- Calcium oxide
- Carbon tetrachloride
- Carbinol
- Citric acid

- Charcoal
- Chloroform
- Cellulose powder
- Cholesterol
- Copper metal
- Copper acetate
- Cupric sulphate
- Creatinine
- Cresol red
- Crystal violet
- Comousive Brilliant blue
- Cytosine
- Cysteine hydrochloride
- Cobalt chloride
- Chlorophenol
- O-Cresol
- P-Cresol
- M-Cresol
- P-Chloro benzoic acid
- Chloroacteic acid
- Calcium sulphate
- Calcon carboxylic acid
- Cobaltous chloride
- Calcium nitrate
- Cupric acetate
- Carbol fuschin powder
- Cedar wood oil
- Congo red indicator
- Cyclohexane
- Copper sulphate
- D-Glucose
- 3,5 Dinitrosalicylic acid
- DNA
- D-mannitol
- Dichlorophenol Indophenol
- Diphenylamine
- 2,6 Dichlorophenol
- Diethyl ether
- EDTA
- Ethanol
- Ferric chloride
- Ferrous ammonium sulphate
- Fructose
- Ferric sulphate
- Glycine

- Glucose
- Glacial acetic acid
- Gelatin
- Hydrochloric acid
- Histidine
- Hydrogen peroxide
- Hydroxy Quinoline
- Iodine resublimed
- Inoistol
- Isopropanol
- Isoamyl alcohol
- L-Glucose
- Leucine
- Lysine
- Methyl red
- Molybdenum
- Methyl orange indicator
- Mercuric sulphate
- Maltose
- Methylene bisacrylamide
- Methyl cellosolve
- Manganous sulphate
- Molisch reagent
- Manganous sulphate
- Magnesium sulphate
- Malate 3 acetic acid
- 2-Mercaptoethanol
- Millon's reagent
- Methyl propanol
- Magnesium carbonate
- Magnesium chloride
- Methanol
- Naphthalene
- 1-Naphthol
- Napthyl acetate
- Ninhydrin
- Potassium hydroxide pellets
- Phenol
- Potassium iodide
- Peptone
- Trichlorobenzene
- Trichloro acetic acid
- Toulene
- Tri sodium citrate
- Urea

Library books:

- Immunology and Microbiology
- Microbiology fundamentals and applications
- Microbiology Introduction
- Text book of Microbiology
- Laboratory experiments in Microbiology
- Industrial Microbiology
- ✤ A text book of Pathology
- Practical Microbiology
- Medical bacteriology
- Microbiology MLT
- Microbiology
- Microbial technology
- ✤ A text book of Microbiology
- Principles of fermentation technology
- Introduction to Modern Virology
- An introduction to viruses
- Text book of Medical physiology
- Industrial Microbiology
- Biogas technology
- Modern food technology
- General Microbiology
- Handbook of laboratory
- Laboratory named in Microbiology
- An introduction to Microbiology
- Microbiology (International Edition)
- Pathology
- ✤ Genetics
- Molecular Genetics
- Basic Genetics
- Microbial Genetics
- Concepts of Genetics
- Genetic Engineering
- Molecular cloning
- The Genetics of bacteria and their viruses
- Cell biology, Genetics

SWOC analysis of the department and future plans:

Strength:

- Qualified and highly credentialed
- 🔸 faculty .
- Good equipments in laboratories and expensive
- uv spectroscopy in lab
- Excellent support from the administration.
- Equal emphasis both on theory and practical

Goods results and other ciricular activities

Finance support and good laboratories with sufficient glasswares.

Weakness:

- ♣ Limited number students in the
- classrooms.

Opportunities:

- Students can know the role of microorganisms as biotechnological agents and about bioreactors for
- fermentation of products like vitamins, antibiotics, alcohols etc. Creation of a vibrant academic atmosphere in the department with the help of reputed and experienced teachers.

↓ To prepare our students for entrance exam for PG courses & competitive exams with campus placement every year.

Challenges:

- To maintain the academic standard of the department and bringing competition from biosimilars.
- To increase the loss of patent.
- ✤ To link the curricula and teaching learning process with need of
- industries. Motivating students to take projects
- Motivating students to take jobs in industry, defense research laboratories, pharmaceutical companies, on low Rand D productivity.

*